SkelMod 54V277F

+ 54V DC nominal voltage

- + Ultra-low ESR
- + Long lifetime 1 million duty cycles
- + Integrated Supercapacitor Management System for effective cell balancing
- + CAN bus communication
- + Natural cooling
- + High Power output
- + IP65

General Specifications	Value	Unit
Electrical		
Rated voltage $V_{_{ m R}}$	54	V
Rated capacitance	277	F
Rated DC 10ms ESR	3.3	mΩ
Rated DC 1s ESR	4.4	mΩ
Rated maximum peak current (for 1 s duration) ^{1, 9}	3.371	kA
Short circuit current (For informational purposes - do not use as operating current.)	16.4*	kA
Maximum stored energy ²	112.1	Wh
Cells in total	18	pcs
Cell type	SCX5000	

* Based on rated voltage and rated ESR. Based on typical ESR value, 19 kA should be considered for protective circuitry sizing.

Connectors

Power connector	Ø 9 mm Trough hole
Communications connector on the device	Phoenix Contact female M12; X-coded 8-pos (Mfg part #:1424177)

Temperature and Life	Value	Unit
Operating temperature range		
Minimum	-40	°C
Maximum	+65	°C
Storage temperature range (uncharged)	
Minimum	-40	°C
Maximum	+50	°C
Environmental conditions		
Altitude class (EN 50125-1:2014)	A1 - 1400 m from sea level	
Yearly average relative humidity (EN 50125-1:2014)	75%	
Life		
Lifetime @ 54V and maximum operating temperature	1500	Hours
Storage life @ RT, uncharged	10	Years
Projected cycle life @ RT, between 54 V and 27 V	1,000,000	Cycles
Capacitance decrease 20% from rated value; resistance increase 100% from rated value		

Copyright © 2022 Skeleton Technologies GmbH. All rights reserved. 01-DS-220909-SKELMOD-54V277F-1C Page 1/3

Supercapacitor management system

Cell balancing method	Controlled Resistive Balancing
Temperature reading	4 NTC sensors
Voltage monitoring/balancing	Individual cells
Nominal auxiliary supply voltage (EN 50155:2017)	24 V
Auxiliary supply voltage range (EN 50155:2017)	16 - 33 V
Interruptions on power supply voltage class (EN 50155:2017)	S2 (10 ms)
Supply change over class (EN 50155:2017)	C1 - 14.4V for 100 ms
Auxiliary supply current at nominal voltage	max. 0.1 A
Inrush current	0.00156 l²t
Supercapacitor monitoring range	4 - 54 V
Maximum allowed cell imbalance for module discharge to 0V	0.3 V*
Normally open fault line maximum allowable current	0.1 A
Communication interface	Can bus 2.0B
Communication protocol	SAE J1939

Value; Unit

*Refer to user manual for addional information

Standards (railway application)

(realities) application)	Value
General rules for electric equipment	EN 60077-1:2017
Insulation coordination	EN 50124-1:2017
Environmental conditions	EN 50125-1:2014
Protective provisions	EN 50153:2014+ A1:2017+A2:2020
Electromagnetic compatibility	EN 50121-3- 2:2016+A1:2019
Fire protection	EN 45545- 2:2013+A1:2015
Shock and vibration	EN 61373:2010/ AC:2017
Crimped connections requirements	EN 60352-2:2006/ A1:2013
Capacitors for power electronics	EN 61881-3:2012/ A1:2013
Electronic equipment requirements	EN 50155:2017

Value

Certified according to EN 45545-2:2015 + A1:2013 by TÜV Rheinland Rail Certification B.V., certificate number TRRC/CB 21/293-V01, issued on 2021-03-16. The certificate can be seen at skeletontech.com/downloads.

Standards

Degrees of protection provided by enclosure

EN 60529:1991/ A2:2014/AC:2019

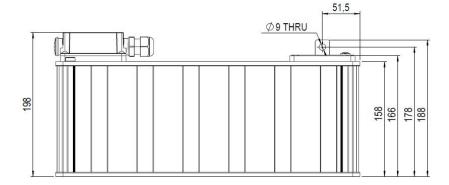
System level electical parameters (EN 50124-1:2017 & EN 60077-1:2017)

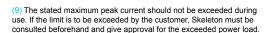
Value; Unit Maximum series working voltage 750 V DC Rated isolation voltage 900 V DC Rated impulse voltage 5 kV Overvoltage category OV2 Pollution degree PD4* Dielectric withstand voltage power 3.3 kV AC, 1 min** terminal to enclosure Dielectric withstand voltage power 3.3 kV AC, 1 min** terminal to AUX signals Dielectric withstand voltage AUX 500 V AC, 1 min** signals to enclosure CAN bus to AUX power isolation Not isolated

*With IP covers installed on the power terminals, otherwise PD3 **Type test values, refer to user manual for routine test values

Energy	Value	Unit
Max stored energy ²	112.1	Wh
Specific energy ³	7.0	Wh/kg
Energy density ⁴	8.3	Wh/L
Power	Value	Unit
Rated nominal power, calculated from 1	0 ms ESR	
Power ⁵	220.9	kW
Specific power, matched Impedance 6	13.8	kW/kg
Power density, matched Impedance 7	16.4	kW/L
Rated practical power, calculated from	1 s ESR	
Power ⁵	165.7	kW
Specific power, matched Impedance 6	10.4	kW/kg
Power density, matched impedance ⁷	12.3	kW/L
Thermal	Value	Unit
Thermal Thermal resistance given at ΔT 30 °C (R_{th}) ^e	Value 0.41	Unit °C/W
Thermal resistance given at ΔT 30 °C (R_{th}) ⁸ Thermal capacitance (C_{th})	0.41	°C/W
Thermal resistance given at ΔT 30 °C (R _{th}) ⁸ Thermal capacitance (C _{th}) Max continuous current ¹⁰ , ΔT = 15°C	0.41 18	°C/W kJ/°C
Thermal resistance given at ΔT 30 °C (R_{th}) ⁸ Thermal capacitance (C_{th})	0.41 18 91	°C/W kJ/°C A
Thermal resistance given at ΔT 30 °C (R _{th}) ⁸ Thermal capacitance (C _{th}) Max continuous current ¹⁰ , ΔT = 15°C Max continuous current ¹⁰ , ΔT = 30°C	0.41 18 91 129	°C/W kJ/°C A A
Thermal resistance given at ΔT 30 °C (R _{th}) ⁸ Thermal capacitance (C _{th}) Max continuous current ¹⁰ , ΔT = 15°C Max continuous current ¹⁰ , ΔT = 30°C Max continuous current ¹⁰ , ΔT = 40°C	0.41 18 91 129 149	°C/W kJ/°C A A A
Thermal resistance given at ΔT 30 °C (R _{th}) ⁸ Thermal capacitance (C _{th}) Max continuous current ¹⁰ , ΔT = 15°C Max continuous current ¹⁰ , ΔT = 30°C Max continuous current ¹⁰ , ΔT = 40°C Physical parameters	0.41 18 91 129 149 Value	°C/W kJ/°C A A A Unit
Thermal resistance given at ΔT 30 °C (R_{th}) ⁸ Thermal capacitance (C_{th}) Max continuous current ¹⁰ , ΔT = 15°C Max continuous current ¹⁰ , ΔT = 30°C Max continuous current ¹⁰ , ΔT = 40°C Physical parameters Mass. Typical	0.41 18 91 129 149 Value 16	°C/W kJ/°C A A A Unit kg L
Thermal resistance given at ΔT 30 °C (R_{th}) ⁸ Thermal capacitance (C_{th}) Max continuous current ¹⁰ , ΔT = 15°C Max continuous current ¹⁰ , ΔT = 30°C Max continuous current ¹⁰ , ΔT = 40°C Physical parameters Mass. Typical Volume	0.41 18 91 129 149 Value 16 13.5 422 x 194	°C/W kJ/°C A A A Unit

skeleton^{*}


Copyright © 2022 Skeleton Technologies GmbH. All rights reserved.


+ + + + + + + + Page 2/3

1) Maximum peak current (1 sec) =
$$\frac{\frac{1}{2} \text{ CV}}{\text{C} \times \text{ESR} + 1\text{s}}$$
 (2) $\text{E}_{\text{stored}} = \frac{\frac{1}{2} \text{ CV}^2}{3600}$ (3) $\text{E}_{\text{specific}} = \frac{\text{E}_{\text{stored}}}{\text{mass}}$
(4) $\text{E}_{\text{stored}} = \frac{\text{E}_{\text{stored}}}{(1 - 1)^2}$ (5) $\text{P}_{\text{stored}} = \frac{\text{V}^2}{(1 - 1)^2}$ (6) $\text{P}_{\text{stored}} = \frac{\text{P}_{\text{max}}}{(1 - 1)^2}$

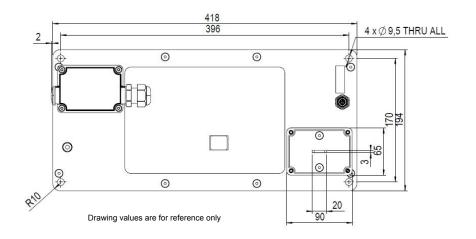
$$\frac{P_{\text{max}}}{V_{\text{density}}} = \frac{V_{\text{specific}}}{V_{\text{specific}}} = \frac{V_{\text{max}}}{M_{\text{specific}}} = \frac{V_{\text{max}}}{M_{\text{specific}}} = \frac{V_{\text{max}}}{M_{\text{specific}}} = \frac{V_{\text{specific}}}{M_{\text{specific}}} = \frac{V_{\text{specific}}}{M_{specific}} = \frac{V_{specific}}{M_{specific}} = \frac{$$

(7)
$$P_{density} = \frac{\Gamma_{max}}{volume}$$
 (8) $R_{th} = \frac{\Delta T}{DC \ 1s \ ESR \times I^2}$

(10) These values of current refer to begin of life conditions of the product, for system design 200% ESR should be considered .

Standard markings

Name of manufacturer, part number, serial number, rated voltage
 Rated capacitance, negative and positive terminals, warning marking


Total energy in watt-hours

Notes

 + All information provided on this data sheet and all subsequent supercapacitors sales and testing are subject to Standard
 Terms of Service (ToS) available on www.skeletontech.com, document
 General Terms of Sale for Skeleton Technologies GmbH
 + For ultracapacitors, the power values are often calculated using nominal resistance values (DC 10 ms ESR). For engineering purposes,

- practical values based on total resistance (DC 1s ESR) are preferred. + All calculated values according to beginning-of-life conditions.
- + Mounting Recommendation: Please refer to the user manual for installation recommendations.
- + No cables included with the modules.
- + IP covers not included, sold as separate components, part #:

+ IP covers kit - 7100026 (including red and black covers, cable glands and fasteners for the covers)

skeleton⁺

Copyright © 2022 Skeleton Technologies GmbH. All rights reserved. 01-DS-220909-SKELMOD-54V277F-1C +